372

CONCLUSION

The proposed method which is based on the combined
principle of the resonator and waveguide method can be
used with certain modification over a wide range of values
of ¢ and tan §. This method can be considered to be uni-
versal like waveguide or coaxial line methods [6]-[107].

However, the waveguide and coaxial line methods which
can be used to measure ¢ and tan § over a wide range of
values are to employ graphical solution in certain cases
in order to solve nonsingle valued transcendental equa-
tions [7]. Simpler working equations in closed form in the
given case can be considered to be an added advantage
of this method over the earlier methods, which enables
measurement of ¢ and tan 6 over wide range of values.

In certain cases of the earlier methods, fabrication of
the experimental sample, in order to satisfy the condition
of quasi-stationary distribution of field, requires a very
sophisticated technological setup [9]. The same experi-
mental unit cannot always be used for measuring the
parameters under two conditions of field distribution
[6], [91.

Thus this proposed new method which enables measure-
ment of ¢ and tan & over a wide range of values can be
used with certain attachment for the whole range of these
parameter’s values. When the size of the sample is con-
veniently limited the proposed method proves to be su-
perior to the earlier methods. Convenience of thermal
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shielding of the experimental sample makes it possible
to study the dependence of ¢ and tan § with respect to
temperature, which has important scientific significance
regarding investigation of the properties of materials.
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Abstract—A general approach for deriving quasi-static equivalent
circuits for discontinuities in microstrip lines is presented. The
formulation is based upon Galerkin’s method applied in the Fourier
transform domain., Numerical results are presented for a number of
different configurations and compared with data available from
other sources.
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I. INTRODUCTION

HE PURPOSE of this paper is to develop a general

approach for computing the discontinuity capacitance
for a wide variety of microstrip structures. Currently, a
number of different methods exist for attacking this prob-
lem, e.g., the moment method, the variational approach,
projective method of solution for the integral equation, to
list a few. Discussion of these methods may be found in
publications by Farrar and Adams [17], Maeda [2], and
Silvester and Benedek [37], [4]. The approach to be
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deseribed in this paper is somewhat novel in that it uses
the familiar Galerkins’ method in the Fourier domain
rather than the spatial domain. The principal advantage
of using the Fourier domain is that the integral equation
in the space domain is transformed into an algebraic
formulation after Fourier transformation of the convolu-
tion form. The method is also quite general and is therefore
useful for dealing with a wide variety of discontinuity
configurations. We begin with the description of the
method in Section II. Illustrative examples and com-
parison of the results with other experimental and theo-
retical data will follow.

II. GENERAL FORMULATION OF THE
DISCONTINUITY PROBLEM

To illustrate the formulation of the general discontinuity
problem, let us consider the geometry shown in Fig. 1.
The structure consists of two ground planes (one at the
top and the other at the bottom), two dielectric layers
with dielectric constants & and e, and a set of infinitely
thin metallic strips placed at the interface of the two media.
The ground planes and dielectric materials are assumed to
be lossless and infinite in extent in the z and z directions.
Note that no restriction is placed on the shapes of the
metallic strips. It is further noted that by letting hy — o
and e1 = 1, this structure reduces to the open one that
will be considered in the next section.

It will be assumed in this work that the frequency range
of interest is such that the quasi-static approximation is
valid. In many cases, this approach may be adequate up
to perhaps 1 GHz. The potential function ¢ then satisfies
Poisson’s equation

1
Vie(zy2) = — —p(22)d(y — hn) (1)
where p is the charge density distribution on the strips
and § is the familiar Dirac delta. Typically, one transforms
this equation into an integral equation via the use of the
Green’s funetion. The integral equation is

o(2,y,2) = /G(x — 7'z — 2y y)e(de) da'de’ = G*p

(2)

where @ is the Green’s function and * implies eonvolution.
The Green’s function appearing in (2) is obtainable by
calculating the potential distribution of a point charge
located at the interface of the two dielectric layers. The
form of the Green’s function derived in this manner is, in
general, quite complicated due to the inhomogeneous
nature of the filling. Also, the Green’s function is slowly
converging if the separation between the two ground
planes becomes large. Finally, if the upper plate is entirely
removed and if we are dealing with an unshielded geometry,
the waveguide approach for constructing the Green’s
function is no longer applicable. However, all of these
difficulties are circumvented when one works in the
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Fourier transform domain. This will be evident from the
discussion that follows.

The first step in the method is to introduce the two-
dimensional Fourier transform via the following defini-
tions:

é(a,y,8) =f / ¢(z,y,2) exp (jax + jBz) dxdz (3)

—0 —00

1
(2m)?

o) = = [ [ $aw8) exp (~jar — o) dud

4)

of the forward and inverse transforms. The second step is
to transform (1) to get

d?¢ (a,y,8)

— (a2 + B d(eyy,8) + T
Y

(5)

%5(%[3)5(.7/ — hy.

The solution to (5), which is a one-dimensional differential
equation, is written in a straightforward manner for the
two regions above and below the interface:

Al(a7ﬁ)eyy + A2(O‘76) €xXp ('—'ﬂ/):

0<ysh
(5(0[,y,5) =
Bl(ayﬁ)ew’ + Bg(a,ﬂ) eXP(—‘Y?/),
h<y<h+h (6)
where

v = (a2 + 52)1/2.

The third step is to apply the boundary condition on &
in the Fourier transform domain. The boundary conditions
in the space domain are: a) ¢, the potential funection
equal to 0 on the ground planes; and b) the continuity
condition on ¢ at the interface y = h. In addition, the
normal component of the displacement vector at the inter-
face is required to be discontinuous by the charge distribu-
tion at the interface. All of these boundary and interface
conditions are readily transformed into the Fourier domain
to yield
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5(06,0713) =0 (73')
&;(a)hl + h27:3) =0 (7b)
$(a7h1~;B) = $(¢1,h1+,3) (70)
8~ i a~ 172
€r2€) M — &1€0 —’d)(_ay—ﬁ)' = _ﬁ(ayhlyﬁ)'
ay h1+ ay k1™
(7d)
Incorporating (7) into (6) allows us to derive the solution
F(ahsf) = Bl ()

€0’Y[€r2 COth ‘yhz + €1 COth "Yh:[] ’

Equation (8) gives the expression for the transform of the
potential function in terms of the Fourier transform of the
charge distribution at the interface. The factor multiplying
#(a,8) in the right-hand side of (8) may be interpreted
as the Fourier transform of the Green’s function. It may
be noted that the expression for the transform of the
Green’s function is quite simple and that it goes to a
simple limit when one of the ground planes reaches
infinity.

We will now discuss the solution of (8) by using the
Galerkin’s method in the transform domain. To this end
we write (8) as

éo(a:hbﬁ) + &i(a;hl7ﬁ) = é(a;hliﬁ)ﬁ(ayﬂ) (9)

where

1
eoy[ €2 coth vhe + €1 coth vh |

and @.(a,hy,B8) is the Fourier transform of the potential
distribution in the region of the interface complementary
to the strips and &;(a,h,B8) is the corresponding transform
of the known potential distribution on the strips. Note
that (9) has two unknowns, namely, 3 and &, We are
nevertheless able to solve for the desired unknown quan-
tity 5 from the single equation (9). The method of solution
is based upon an application of Parseval’s theorem [5]
and Galerkin’s method [5] in connection with (9).

To apply Galerkin’s method, it is necessary to introduce
a set of basis functions for expanding the unknown 5(a,8).
Since the charge distribution p(z,z) is nonzero only on the
strips, we express p(2,2) in terms of ¢, (z,2), which is 0
outside of the nth strip. The choice of the exact functional
form of ¢, clearly depends upon the nature of the
geometry of the problem, and the efficiency of the com-
putation depends upon how well the functions are able to
approximate the true charge distribution on the strips.
For a complicated configuration, the choice of the basis
functions is not trivial and special consideration is needed.
For example, for calculating the capacitance of a circular
disk, it is found by Itoh and Mittra [6] that the applica-
tion of the Hankel transform is preferable to the applica-
tion of the Fourier transform. However, since we will be
using a variational approach, the first-order approx-
imation in the charge distribution will give results for the
capacitance that would be accurate to the second order.

é(a;hlyﬂ) = (10)
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Having made the choice for the ,,, we write p, as

M
pn(T,2) = Z Y™ (2,2),

m=1

n=12-.-,N (11)

where a,,™ are unknown coefficients that must be deter-
mined. But since we are considering the problem in the
Fourier domain, (11) would be transformed as follows:

N M B
plaB) = 2 2 @Y™ (a,f)

n=1 m=1

(12)

where the first summation accounts for the charge dis-
tribution on all of the strips. Substituting (12) into (9),
one obtains

4;0 (O‘)hhﬁ) + éi(a;hlyﬁ)

N M
= G(aB) T X an™Pu™(a,8). (13)
n=1 m=1
Note once again that it is not possible to solve for the
unknown coefficients a,™ directly from (13) since &, is
still unknown. However, the use of the Parseval’s theorem
would eliminate this unknown as will soon be apparent.
Let us first define the inner product by using the
notation

Grlad) B @) = [ [ hlapt @) deds (14)
where the superscript * implies conjugate. We now take
the inner product of (13) with ¢+("*(e,8) and we write
it using the notation of (14). This gives

<$o(a76) + $1(a’_ﬂ) ;Jk(l)*(a76)>

N M _
=2 2 an® (G $0*),

n=1 m=1
k=12-+-,M

l=12.--N. (15)

The reader may recognize at this point that we are fol-
lowing the usual Galerkin’s procedure except that it is
being applied in the Fourier transform domain. Using
Parseval’s theorem one may write (15) in the following
form:

N M
2 X an™ (G Ga0%)

n=1 m=1
= (27)2<¢i(x72)7‘l’k(l)*(xyz)> + (21r)2<§b0($72) ,ll/k(l)*(I,Z) >:
k=12 M
1=12---N. (16)

Note that all of the inner products appearing in the above
equations are now known except for the second one in the
right-hand side. However, it is obvious that this term is 0,
because ¢:® (z,2) has zero value on the complementary
section of the kth strip on the interface. Finally, using the
fact that ¢:(x,2) is equal to V, which is equal to the
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known potential on the ith strip, we may write the follow-
ing matrix equation:

N oM
2 2 G g% Yam ™

n=1 m=1
= (2m)VO [ 0 (2,2) da de,
81

M

l=1,---,N. (17)

When the @, are determined from the solution of the
above matrix equation, one can determine the charge
distribution of the nth strip from the equation

QM = M a <")/ Y™ (£,2) dx de, n=1,--+,N.
m—l
(18)
The capacitance matrix [ 7] that is defined via the equation
QW Cu,- - +,Cov 148
S T A 1 R
Q(:N) 01;1, e Oy VEN)

where Q@@ and V@ are the total charge and potential
distribution on the ¢th strip, can now be computed from
the knowledge of the total charge.

Having detailed the general approach to the solution of
the capacitance problem, we will now illustrate the applica-
tion of the theory to some structures of interest.

III. GAP IN THE CENTER CONDUCTOR OF
AN UNSHIELDED MICROSTRIP LINE

The geometry of this structure is shown in Fig. 2. It is
convenient to represent the equivalent network in terms
of a pi circuit, as shown in Fig. 2. The series capacitance
C, may be associated with the coupling phenomena
between the two center strips, while the shunt capacitance
C, may be associated with the fringing effect of the edge
of the strip. In order to find a relationship between C,
and C, and Cy and Cy, we consider the schematic con-
figuration shown in Fig. 3. We note that the structure
shown in Fig. 2 corresponds to the case of L — o« in
Fig. 3(a). C,. represents the excess capacitance (end
effect) and C, is the capacitance per unit length of the
uniform microstrip with the same width. The capacitance
matrix of the symmetrical structure shown in Fig. 3(a)
may now be written in the following form:

(3 Cu Cp\ [V®
@ e Cun) \V®
where VO and V® are the potentials on the strips, and

QW and Q@ are the induced charges on the corresponding
strips. For even excitation, as shown in Fig. 3(b), one

(20)
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obtains Q® = C,, + LCy + C, (note that there is no
coupling between strips). From (20) we obtain QV =
Cu + Ciz; therefore, one may write the following equation:

Cu + Cre = Cop. + LCy + C,. (21)

Now let us consider the odd excitation as shown in Fig.
3(c) and (d). One readily obtains that QW = 2C, 4
Cp + Co. + LCy (note that the strips are coupled in this
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case). From (20) we derive that Q® = Cy — Crs- There-
fore

Cy — Cr = 2C, + Cp + Coo + LC. (22)

Recall that we have concentrated on evaluating the equiv-
alent circuit for the structure with finite L. To obtain the
equivalent eircuit for the infinite structure, one considers
the limiting procedure of L becoming infinitely large. By
subtracting and adding (21) and (22) one obtains

C, = —lim Cy (23)
L->oo
and
C,, = lim (Cu‘ 4+ Cra — Coe — LCO)- (24)

L0

It is clear from the above relations that Cy and Cys can be
determined once we solve for the total charge on the two
strips. To solve the latter problem we now refer to the
general method outlined in Section II and apply it to the
specific problem at hand. To this end we first derive the
transformed Green’s function by letting es = 1, 1 = ¢,
hy = h, and hy, — « in (10), which reads '
1
eoy[er cothyh + 177
This equation is identical to the Green’s function derived
in the earlier work [87]. The next step is to choose the basis
functions . For the problem under consideration a
simple but adequate choice is a two-dimensional pulse
function. When we use these functions, we have

w0 = [ (e+ D) - m(z- 2]
-2

oo = (z+ D) - m (s~ 1))
a(rr+S)-n(:+35)] cm

where H (z) is the conventional step function, i.e.,
H(z) =1, z>0
0, z < 0.

G(v,h) = (25)

Fourier transforms of the above basis functions are readily
obtained and are written as

i 4 L S 1
F1® (a,8) = 5 sin (g sin %« exp [jﬁ (~2~ + 5)] (27a)

(@) = BO*(@f). (27b)

We now have the necessary information for evaluating
the matrix elements in (17), and since the matrix size is
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only 2 X 2, the solution for the two coefficients @, and
a1 ® is a trivial step. Knowledge of &1 and a;® allows us
to calculate the total charge on each strip and obtain
Cu and Cy from (20). The other two capacitances, namely,
Cp and C,, may be computed from (23) and (24). Although
we are interested in the computed results for the case
L — «, it was only necessary to compute the numerical
result for L > 10h. It should also be pointed out that the
computation of Cu and Cys has to be accurate in order to
get precise results for €, and C,. This is due to the fact
that the computation of latter quantities requires the
subtraction of two large numbers that are nearly equal.
It is reported by Silvester and Benedek [3] that the sub-
traction of two nearly equal numbers is avoided in their
method. " '

Fig. 2 shows the graphical plot -for C, and C, for ¢, =
8.875. Those results, which are obtained by the method
just described, are also compared with those of Maeda [2],
who used the dielectric Green’s function, and the agree-
ment is seen to be fairly good. As expected, €, approaches
a constant in the limit of large separation distance S, the
limiting value being equal to the open-circuit capacitance
of the semi-infinite transmission line. These results are
also compared with those of Benedek and Silvester [47],
who obtained the gap capacitance for ¢, = 9.6.

IV. CAPACITANCE OF A FINITE SECTION
OF MICROSTRIP LINE

We now consider the structure shown in Fig. 4, which is
a finite section of a microstrip line of length L, width W,
and height h above the ground plane. Once again the
method outlined in Section I can be used for computing
the capacitance of the structure that is obtained by letting

1000
L €,=6.0
100}—
o L/w=0.2
- 05
=
z |
% 1.0
=
s |
10—
—This Theory
-~--Farrar 8 Adams [I]
] i | Lyl 1 a1 gl

ol ’ 10 10.0

Fig. 4. Normalized capacitance of finite section of mierostrip line.
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S = 01in the geometry shown in Fig. 2. Thus the computa-
tion may be performed by letting S — 0, replacing L by
L/2 and setting VO = V® = 1 V in the formulas used
in the previous. section. It may also be noted that the
computation of the capacitance is much simpler in the
present case because it does not involve the subtraction of
nearly equal large numbers. For the same reason, the
accuracy of the results is also better in the present case
as compared to the gap discontinuity results.

Fig. 4 shows the riormalized capacitance Ch/ee,. LW of
a rectangular microstrip section versus W/h for a range
of L/W between 0.2 and 1.0: Note that ee.LW/h is the
classical parallel-plate capacitance (neglecting the fringing
effect). As expected, the normalized capacitance asymp-
totically approaches 1.as h/W becomes small. Although
only one-term expansion has been used to derive the
result, it is evident that the computed values compare
very well with those obtained by Farrar and Adams [1]
via the method of moments.

V. THE END EFFECT IN AN OPEN-ENDED
MICROSTRIP LINE

Fig. 5 shows the geometry to be considered, namely, a
semi-infinite open-ended microstrip line. The effect of the
discontinuity at the open end may be represented by the
lumped shunt capacitance C,, [3]. The procedure for com-
puting C,, is as follows. One computes the total capacitance
C.(L) of a rectangular-section microstrip line of length L.
The excess capacitance is then obtained using the formula

Coe = lim Coo(L) = lim [ C(L) — LCo]

(28)

Lo L->w

where C, is again the capacitance per unit length of an
infinitely long microstrip line with same h and W param-
eters. The justification for the use of (28) is easily under-
stood by referring to the lumped circuit representation of
the open-circuited microstrip line as shown in Fig. 6.
It is again necessary to subtract two large nearly equal
numbers, viz., C;(L) and LC, when using (28). This
difficulty may be decreased somewhat by using numerical
values of Co in (28) that were computed using a three-
dimensional formulation. In the computation, the following
expressions were used:

CoeL + 8) = 5[C:(t +8) — (L +8)Cul  (29)
For large L, (29) gives the value of Cy:
= C(L+3) —C(L) (30)

)

where we have used the fact Co(L + 8) =~ C,.(L). The
results for Co were compared with those obtained by
Yamashita and Mittra [9] who used the variational
technique for two-dimensional structure; good agreement
between the two results was observed. Using these values
of Cy from (30) and computing C,. from (28), one obtains
the results that are shown in Kig. 5 for range of W /h and
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number of different dielectric constants. Once again the
results have been compared to those given by Farrar and
Adams [1], and although only one-térm approximation
was used in our computation, the results nevertheless
show very good agreement with those obtained by the
moment method. The results -have also been compared
with those obtained by Silvester and Benedek [37], though
not shown in Fig. 5. It is found that their results are 4-8
percent larger than those obtained by the present method.
The caleulations were performed on a CDC G-20 (this
computer is about ten times slower than the IBM 36-/75).
Itis found that about 150 s are required for total processing
time for evaluating each open eapacitance.

VI. CONCLUSIONS

In this paper we have described a general approach for
computing the quasi-static equivalent circuit for micro-
strip line discontinuities. The approach is novel in that
Galerkin’s method is employed in the spectral domain to
derive a matrix equation that is numerically efficient for
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solving the capacitance problem. Numerical resilts have
been obtained and compared with previously published
results. The dccuracy and the relative efficiency of the
method have been demonstrated.

REFERENCES

[1] A. Farrar and A. T. Adams, “Matrix methods for microstrip
three-dimensional problems,” IEEE Trans. Microwave Theory
Tech., vol. MTT-20, pp. 497-504, Aug. 1972. | )

[2] M. Maeda, “An analysis of gap in microstrip transmission lines,”
IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 309-
395, June 1972. ‘ .

[3] P. Silvester and P. Benedek, “Equivalent capacitances of micro-
strip open circuits,” IEEE Trans. Microwave Theory Tech., vol.
MTT-20, pp. 511-516, Aug. 1972.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-22, NO. 4, APRIL 1974

[4] P. Benedek and P. Silvester, “Equivalent capacitances for
microstrip gaps and steps,” IEEE Trans. Microwave Theory
Tech., vol. MTT-20, pp. 729-733, Nov. 1972,

[5] 1. Stakgold, Boundary Value Problems of Mathematical Physics,
vol. 2. New York: Macmillan, 1968.

{6] T. Itoh and R. Mittra, “A new method for calculating the
capacitance of a circular disk for microwave integrated circuits,”
1EEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 431~
432, June 1973.

[7] W. R. Smythe, Static and Dynamic Electricity. New York:
MeGraw-Hill, 1968. )

[8] T. Itoh, R. Mittra, and R. D. Ward, “A method for computing
edge capacitance of finite and semi-infinite microstrip lines,”
IEEE Trans. Microwave Theory Tech. (Short Papers), vol
MTT-20, pp. 847-849, Dec. 1972.

[9] E. Yamashita and R. Mittra, ‘Varistional method of the
analysis of microstrip lines,” IEEE Trans. Microwave Theory
Tech., vol. MTT-16, pp. 251-256, Apr. 1968.

Theory of Coupled Open Transmission Lines and lts Applications

MASANORI MATSUHARA anp NOBUAKI KUMAGAI, sENIOR MEMBER, IEEE

Abstract—A technique is presented which is applicable to any
uniform coupled open transmission lines such as coupled optical
integrated circuits. The proposed technique is as follows.

The electromagnetic fields of the wave propagating along a coupled
line is expréssed in terms of a linear combination of the fields associ-
ated with the individual lines, as a zero-order approximation. Insert-
ing this trial field description into the variational expression for the
propagation constant 3, and applying the well-known Rayleigh~Ritz’s
procedure, accurate solutions for the propagation constants of the
coupled lines are obtained.

This method can be applied generally to analyze coupled structures
in microwave, millimeter wave, and optical wave circuitry. As an
illustrative example, the coupling between two optical transmission
lines consisting of lens-like dielectric media has been analyzed by
means of the proposed technique.

I. INTRODUCTION

HE PROBLEM of coupling between open transmission
lines is interesting both from academic and practical
points of view in connection with the design and analysis
of optical integrated circuits and components (see Fig. 6).
Though several papers concerning the coupling of open
transmission lines have been reported [1]-[4], only the
special case where the coupling occurs between two
identical open transmission lines has been analyzed. To
the authors knowledge, a technique adequate to treat the
coupling between two different open transmission lines
has not been given before.
This paper presents a theory which can be applied to
two arbitrary coupled open transmission lines. The tech-

Manuscript received May 11, 1973; revised September 10, 1973.
The authors are with the Department of Communication Engi-
neering, Faculty of Engineering, Osaka University, Osaka, Japan.

nique proposed is based on the variational method.! The
procedure of the calculation is quite simple and straight-
forward as long as the electromagnetic fields associated
with individual transmission lines are already known. As .
an example of the application of the proposed theory, the
coupling between two dielectric lines consisting of lens-
like media has been analyzed.

II. VARIATIONAL EXPRESSION FOR THE
PROPAGATION CONSTANT

The magnetic field H of any uniform open transmission
line can be expressed as

H = (h+ ih.) explj(wt — B2)] (1)

where h, and h, are the transverse and longitudinal com-
ponents of the field, respectively, i, is a unit vector in the
longitudinal direction 2z, and 8 is the propagation constant.
The variational expression for the propagation constant 8
in the z direction of a lossless uniform transmission line
is given as?®

g = N/D 2)

! The theory described in the present paper was originally re-
ported at Radiation Science Research Committee on April 30,
1971, in Japanese. After preparing the manuscript of the present
paper, the authors found two related articles. One is Marcuse’s
work [5] where the coupling problem is treated with a perturbation
method, and the other is Snyder’s paper [6] in which the problem
is solved by a modal-expansion approach.

2 The variational expressions for the propagation constant of the
guided waves have been derived by several authors in different
forms. The expression (2) is a slight modification and generalization
of Kurokawa’s original one [7]. The variational expression (2) has
the advantage that it can be easily applied even though the material
constants involved change discontinuously in the transverse cross-
sectional surface of the guide.



