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CONCLUSION

The proposed method which is based on the combined

principle of the resonator and waveguide method can be

used with certain modification over a wide range of values

of d and tan 8. This method can be considered to be uni-

versal like waveguide or coaxial line methods [6}[10].

However, the waveguide and coaxial line methods which

can be used to measure e’ and tan 8 over a wide range of

values are to employ graphical solution in certain cases

in order to solve nonsingle valued transcendental equa-

tions [7]. Simpler working equations in closed form in the

given case can be considered to be an added advantage

of this method over the earlier methods, which enables

measurement of e’ and tan 6 over wide range of values.

In certain cases of the earlier methods, fabrication of

the experimental sample, in order to satisfy the condition

of quasi-stationary distribution of field, requires a very

sophisticated technological setup [9]. The same experi-

mental unit cannot always be used for measuring the

parameters under two conditions of field distribution

[6], [9].

Thus this proposed new method which enables measure-

ment of d and tan 8 over a wide range of values can “be

used with certain attachment for the whole range of these

parameter’s values. When the size of the sample is con-

veniently limited the proposed method proves to be su-

perior to the earlier methods. Convenience of thermal

shielding of the experimental sample makes it possible

to study the dependence of # and tan 6 with respect to

temperature, which has important scientific significance

regarding investigation of the properties of materials.
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I. INTRODUCTION

THE PURPOSE of this paper is to develop a general

approach for computing the discontinuity y capacitance

for a wide variety of microstrip structures. Currently, a

number of different methods exist for attacking this prob-

lem, e.g., the moment method, the variational approach,

projective method of solution for the integral equation, to

list a few. Discussion of these methods may be found in

publications by Farrar and Adams [1], Maeda [2], and

Silvester and Benedek [3], [4]. The approach to be
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described in this paper is somewhat novel in that ‘it uses

the familiar Galerkins’ method in the Fourier domain

rather than the spatiaI domain. The principal advantage

of using the Fourier domain is that the integral equation

in the space domain is transformed into an algebraic

formulation after Fourier transformation of the convolu-

tion form. The method is also quite general and is therefore

useful for dealing with a wide variety of discontinuity

configurations. We begin with the description of the

method in Section II. Illustrative examples and com-

parison of the results with other experimental and theo-

retical data will follow.

H. GENERAL FORMULATION OF THE

DISCONTINUITY PROBLEM

To illustrate the formulation of the general discontinuity

problem, let us consider the geometry shown in Fig. 1.

The structure consists of two ground planes (one at the

top and the other at the bottom), two dielectric layers

with dielectric constants c1 and cZ, and a set of infinitely

thin metallic strips placed at the interface of the two media.

The ground planes and dielectric materials are assumed to

be lossless and infinite in extent in the x and z directions.

Note that no restriction is placed on the shapes of the

metallic strips. It is further noted that by letting hz -+ co

and c,l = 1, this structure reduces to the open one that

will be considered in the next section.

It will be assumed in this work that the frequency range

of interest is such that the quasi-static approximation is

valid. In many cases, this approach may be adequate up

to perhaps 1 GHz. The potential function @then satisfies

Poisson’s equation

v’~(z,y,z) = – ~ p(z,z)f3(zJ – h) (1)

where p is the charge density distribution on the strips

and 6 is the familiar Dirac delta. Typically, one transforms

this equation into an integral equation via the use of the

Green’s function. The integral equation is

@(i?q/,z) =
/

G (z – %’,~ – Z’jy I ‘/)/J (i,2’) dx’dz’ = G*P

(2)

where G is the Green’s function and * implies convolution.

The Green’s function appearing in (2) is obtainable by

calculating the potential distribute on of a point charge

located at the interface of the two dielectric layers. The

form of the Green’s function derived in this manner is, in

general, quite complicated due to the inhomogeneous

nature of the filling. Also, the Green’s function is slowly

converging if the separation between the two ground

planes becomes large. Finally, if the upper plate is entirely

removed and if we are dealing with an unshielded geometry,

the waveguide approach for constructing the Green’s

function is no longer applicable. However, all of these

difficulties are circumvented when one works in the

Fig. 1. General microstrip discontinuity y problem.

Fourier transform domain. This will be evident from the

discussion that follows.

The first step in the method is to introduce the two-

dimensional Fourier transform via the following defini-

tions:

mm

C$(a,y,fl) = H @(z,y,z) exp (jaz + jflz) d.r dz (3)
—cc —m

(4)

of the forward and inverse transforms. The second step is

to transform (1) to get

– (a’+ B’)J(CW,B)+ “~$y’)

—– – :F(a,f?)a(y – h). (5)

The solution to (5), which is a one-dimensional differential

equation, is written in a straightforward manner for the

two regions above and below the interface:

where

.y = (a’ + (32)1/2.

The third step is to apply the boundary condition on ~

in the Fourier transform domain. The boundary conditions

in the space domain are: a) d, the potential function

equal to O on the ground planes; and b) the continuity
condition on ~ at the interface y = h. In addition, the

normal component of the displacement vector at the inter-

face is required to be discontinuous by the charge distribu-

tion at the interface. All of these boundary and interface

conditions are readily transformed into the Fourier domain

to yield
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c$(a,o,@) =0 (7a)

d(a,hl+hz,l$ =0 (7b)

d(a,h-,B) =d(%hl+,B) (7C)

(7d)

Incorporating (7) into (6) allows us to derive the solution

d(a,h,fl) =

F(a,o)
(8)

Eo-J_~r2 coth ~hs + erI coth yhJ “

Equation (8) gives the expression for the transform of the

potential function in terms of the Fourier transform of the
charge distribution at the interface. The factor multiplying

3 (a,/3) in the right-hand side of (8) may be interpreted
as the Fourier transform of the Green’s function. It may

be noted that the expression for the transform of the

Green’s function is quite simple and that it goes to a

simple limit when one of the ground planes reaches

infinity.

We will now discuss the solution of (8) by using the

Galerkin’s method in the transform domain. To this end

we write (8) as

d.(%hl,l$ + &(a,~l,@ = ~(~,hl,~)~(~)~) (9)

where

1
~(a,h@) = (lo)

C07[Cr2 coth yh2 + ~rl coth ~hl]

and & (a,hl,ff) is the Fourier transform of the potential

distribution in the region of the interface complementary

to the strips and& (a,h@) is the corresponding transform

of the known potential distribution on the strips. Note

that (9) has two unknowns, namely, s and ~o. We are

nevertheless able to solve for the desired unknown quan-

tity Z from the single equation (9). The method of solution

is based upon an application of Parseval’s theorem [5]

and Galerkin’s method [5] in connection with (9).

To apply Galerkin’s method, it is necessary to introduce

a set of basis functions for expanding the unknown 5 (c2,1?).

Since the charge distribution p (x,z) is nonzero only on the

strips, we express p (z,z) in terms of #~@) (x,z), which is O

outside of the nth strip. The choice of the exact functional

form of ~~f”) clearly depends upon the nature of the

geometry of the problem, and the eiliciency of the com-

putation depends upon how well the functions are able to

approximate the true charge distribution on the strips.

For a complicated configuration, the choice of the basis

functions is not trivial and special consideration is needed.

For example, for calculating the capacitance of a circular

disk, it is found by Itoh and Mittra [6] that the applica-

tion of the Hankel transform is preferable to the applica-

tion of the Fourier transform. However, since we will be

using a variational approach, the first-order approx-

imation in the charge distribution will give results for the

capacitance that would be accurate to the second order.

Having made the choice for the +~c”j, we write p. as

p. (%2) = 5 Gn(”%(’) (2,2), n = 1,2, . . .,N (11)
~=1

where a~@ are unknown coefficients that must be deter-

mined. But since we are considering the problem in the

Fourier domain, (11 ) would be transformed as follows:

~ (a,/?) = i f &(”)Jm@) (d) (12)
~=1m=l

where the first summation accounts for the charge dis-

tribution on all of the strips. Substituting (12) into (9),

one obtains

6. (~,hl,e) + +~(all,~)

= G(a,@) ;
~=]

Note once again that it is not

~ %WJm(”) (a,@) - (13)
m=l

possible to solve for the

unknown coefficients a~@ directly from (13) since & is

still unknown. However, the use of the Parseval’s theorem

would eliminate this unknown as will soon be apparent.

Let us first define the inner product by using the

notation

(&(@),~a*(c@) ) = /m /m Ih(a,/3)IJ2*(a,@ da @ (14)
—m —m

where the superscript * implies conjugate. We now take

the inner product of (13) with &(ZJ* (a,p) and we write

it using the notation of (14). This gives

(40(%8) + &(a,i3),&~’)*(a,B) )

= E f am@ ((Jjm@J,Jh(Z)*),

n=l m.==1

k = 1,2,...,M

1 = 1,2,...,N. (15)

The reader may recognize at this point that we are fol-

lowing the usual Galerkin’s procedure except that it is

being applied in the Fourier transform domain. Using

Parseval’s theorem one may write (15) in the following

form:

S ~ a~@J(GJw(@,IJk(J)*)
.=l m=l

= (27r)2(@,(z,z) ,#,(’)*(z,z) ) + (2T)’(+O(Z,Z) ,+,(’)*(zlz) ),

k = 1,2,...,M

1 = 1,2,...,N. (16)

Note that all of the inner products appearing in the above

equations are now known except for the second one in the

right-hand side. However, it is obvious that this term is O,

because ~J~J (z,z) has zero value on the complementary

section of the kth strip on the interface. Finally, using the

fact that ~i (z,z) is equal to V(i), which is equal to the
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known potential on the ith strip, we may write the follow-

ing matrix equation:

i ; (G#m@),J,(’)*)%(”)
~=1*=1

= (Zr)zv(o
!

~~(t) (z,z) dx dz,
St

k = 1,...,M

1 =1,... ,N. (17)

When the a~@) are determined from the solution of the

above matrix equation, one can determine the charge

distribution of the nth strip from the equation

Q(n) = : ~m(n)
\

~~(”) ( .c,z) dx dz, n= 1,. ..,N.
%=1 s.

(18)

The capacitance matrix [7] that is defined via the equation

(3=c:)c)‘“)
where Q(;) and V(i) are the total charge and potential

distribution on the ith strip, can now be computed from

the knowledge of the total charge.

Having detailed the general approach to the solution of

the capacitance problem, we will now illustrate the applica-

tion of the theory to some structures of interest.

III. GAP IN THE CENTER CONDUCTOR OF

AN UNSHIELDED MICROSTRIP LINE

The geometry of this structure is shown in Fig. 2. It is

convenient to represent the equivalent network in terms

of a pi circuit, as shown in Fig. 2. The series capacitance

C. may be associated with the coupling phenomena

between the two center strips, while the shunt capacitance

C, may be associated with the fringing effect of the edge

of the strip. In order to find a relationship between CP

and C* and Cll and C12, we consider the schematic con-

figuration shown in Fig. 3. We note that the structure

shown in Fig. 2 corresponds to the case of L .+ w in

Fig. 3 (a). C.. represents the excess capacitance (end

effect) and CO is the capacitance per unit length of the

uniform microstrip with the same width. The capacitance

matrix of the symmetrical structure shown in Fig. 3 (a)

may now be written in the following form:

c)=cx:) ’20)
where 17(1) and V(z) are the potentials on the strips, and

Q(l) and Q(’) are the induced charges on the corresponding

strips. For even excitation, as shown in Fig. 3(b), one

375

1.0 ~

B
-i

— Thm theroy fS~ h
J--- .. . . .. . . . . . .. 7e,= 8.875

F ‘“’
“,. -.

--. — Maeda [2]

q= 8.875

000 Experiment [2]

.s,=8.075

0.1
: ‘-- ~::::[”1

,Tci-
2L.-.J5

i.

z
5.
c-l

0.01 –

Cq

---.Q

. .

h= O.508 (mm)

W-O.50S (mm)

Cp

0.0011 I , I 1 1 1 1 I I I , , 1 , I 1 1

0.01 0.1 1.0
S (mm)

Fig. 2. Series and shunt capacitances for gap discontinuity in
microstrip.

K-———L—————+ Ca t-————L—————i

(a)

f-%+’%

‘“’WC’Cpwcoc
(b)

(c)

c de’ 0’0”‘cm
“l.--J#?cp v’”’

(d)

Fig. 3. Lumped circuit representation of a gap structure.

obtains Q(l) = C.. + LCO + CP (note that there is no

coupling between strips). From (20) we obtain Q(L) =

C,, + C,,; therefore, one may write’ the following equation:

CII + C12 = C., + LCO + C.. (21)

Now let us consider the odd excitation as shown in Fig.

3 (c) and (d). One readily obtains that Q(l) = 2C’0 +

C. + C.. + LCo (note that the strips are coupled in this
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case). From (20) we derive that Q(l) = C1l — Cu. There-

fore

Cu – C,, = 2C. i- C, + C.. i- LCO. (22)

Recall that we have concentrated cm evaluating the equiv-

alent circuit for the structure with finite L. To obtain the

equivalent circuit for the infinite structure, one considers

the limiting procedure of L becoming infinitely large. By

subtracting and adding (21 ) and (22) one obtains

C. = – lim C1~ (23)
L+ m

and

Cp = lim (C,, + C,, – C.. – LC,). (24)
I.-m

It is clear from the above relations that Cll and Clz can be

determined once we solve for the total charge on the two

strips. To solve the latter problem we now refer to the

general method outlined in Section II and apply it to the

specific problem at hand. To this end we first derive the

transformed Green’s function by letting c,.2= 1, E.I = e,,

hl = h, and hz 4 co in (10), which reads

~(-y,h) =
1

(25)
w[e, coth yh + 1] “

This equation is identical to the Green’s function derived

in the earlier work [8]. The next step is to choose the basis

functions #(i). For the problem under consideration a

simple but adequate choice is a two-dimensional pulse

function. When we use these functions, we have -

‘l(l)(”)=k++%+%)]

“HZ-9(2-L-91
[ ( ‘)-H(x-:)]#1(’) (z,z) = H z + ~

26a)

.[H(Z+L+:)-H(Z+:)] ~z,b,

where H(z) is the conventional step function, i.~.,

H(z) = 1, X>o

o, X<o.

Fourier transforms of the above basis functions are readily

obtained and are written as

JJ’) (C@) = J,(’) *(CYJ3). (27b)

We now have the necessary information for evaluating

the matr~ elements in (17), and since the matrix size is

only 2 X 2, the solution for the two coefficients alfl) and
al(z) is a trivial step. Knowledge of al(l) and al(2) allows us

to calculate the total charge on each strip ~nd obtain

Cll and C“ from (20). The other two capacitances, namely,

CP and C,, maybe computed from (23) and (24). Although

we are interested in the computed results for the case

L + UJ, it was” only necessary to compute the numerical

result for L > 10h. It should also be pointed out that the

computation of Cll and Cl’ has to be accurate in order to

get precise results for C, and C,. This is due to the fact

that the computation of latter quantities requires the

subtraction of two large numbers that are nearly equal.

It is reported by Silvester and Benedek [3] that the sub-

traction of two nearly equal numbers is avoided in their

method.

Fig. 2 shows the graphical plot for CP and C, for c, =

8.875. Those results, which are obtained by the method

just described, are also compared with those of Maeda [2],

who used the dielectric Green’s function, and the agree-

ment is seen to be fairly good. As expected, CP approaches

a constant in the limit of large separation distance S, the

limiting value being equal to the open-circuit capacitance

of the semi-infinite transmission line. These results are

also compared with those of Benedek and Silvester [4],

who obtained the gap capacitance for c, = 9.6.

IV. CAPACITANCE OF A FINITE SECTION

OF MICROSTRIP LINE

We now consider the structure shown in Fig. 4, which is

a finite section of a microstrip line of length L, width W,

and height h above the ground plane. Once again the

method outlined in Section II can be used for computing

the capacitance of the structure that is obtained by letting

looo~

I100
227

-L‘m”+
.fr=6.0

L/W=O.2

/ I
0.5

1.0

10 :

—This Theory

---- Farrar 8 Adams [I]

I , ,
0.1

‘“0 h/W
10.0

Fig. 4. Normalized capacitance of finite section of microstrip line.
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S = O in the geometry shown in Fig. 2. Thus the computa-

tion may be performed by letting S -+ O, replacing L by

L/2 and setting V(l) = V@J = 1 V in ,the formulas used

in the previous section. It may also be noted that the

computation of the capacitance is much simpler in the

present case because it does not involve the subtraction of

nearly equal large numbers. For the same reason, the

accuracy of the results is also better in the present case

as compared to the gap dkcontinuity results.

Fig. 4 shows the normalized capacitance Ch/eoe,LW of

a rectangular microstrip section versus W/h for a range

of L/W between 0.2 and 1.0. Note that eoe,I.W/h is the

classical parallel-plate capacitance (neglecting the fringing

effect). As expected, the normalized capacitance asymp-

totically approaches 1 as h/W becomes small. Although

only one-term expansion has been used to derive the

result, it is evident that the computed values compare

very well with those obtained by Farrar and Adams [1]

via the method of moments.

V. THE END EFFECT IN AN OPEN~ENDED

MICROSTRIP LINE

Fig. 5 shows the geometry to be considered, namely, a

semi-infinite open-ended microstrip line. The effect of the

discontinuity at the open end may be represented by the

lumped shunt capacitance C.. [3]. The procedure for com-

puting CO.is as follows. One computes the total capacitance

C,(L) of a rectangular-section microstrip line of length L.

The excess capacitance is then obtained using the formula

Co. = lim Ce~c(L) = lim ~[Ct (L) – LCO] (28)
L+m L+.

where CO is again the capacitance per unit length of an

infinitely long microstrip line with same h and W param-

eters. The justification for the use of (28) is easily under-

stood by referring to the lumped circuit representation of

the open-circuited microstrip line as shown in Fig. 6.

It is again necessary to subtract two large nearly equal

rmmbers, viz., C,(L) and LCo when using (28). This

difficulty may be decreased somewhat by using numerical

values of CO in (28) that were computed using a three-

dimensional formulation. In the computation, the following

expressions were used:

C..(L + ti) = ;[C,(t + 6) – .(L + 6)CO]. (29)

For large L, (29) gives the value of CO:

co =

where we have used

results for CO were

C,(L + 3) – C,(L)

6
(30)

the fact CO.(L + 6) s CO.(L). The

com~ared with those obtained by
Yamashita and Mittra [9] who used the variation

technique for two-dimensional structure; good agreement

between the tw-o results was observed. Using these values

of COfrom (30) and computing Cocfrom (28), one obtains

the results that are shown in Fig. 5 for range of W/h and

iooo~ I

I —This Theory

---- Forror ~ Adams [I]

W/h

377

Fig. 5. Excess capacitance of open-circuited microstrip line.

(b)

Fig. 6. Lumped circuit representation of open-circuited microstrip.

number of different dielectric constants. Once again the

results have been compared to those given by Fa&r and

Adams [1], and although only one-term approximation

was used in our computation, the results nevertheless

show very good agreement with those obtained by the

moment method. The results have also been compared ‘

with those obtained by Silvester and Benedek [3], though

not shown in Fig. 5. It is found that their results are 4–8

percent larger than those obtained by the present method.

The calculations were performed on a CDC G-20 (this

computer is about ten times slower than the IBM 36-/75).

It is found that about 150s are required for total processing

time for evaluating each open capacitance.

VI. CONCLUSIONS

In thk paper we have described a general approach for

computing the quasi-static equivalent circuit for micro-

strip line discontinuities. The approach is novel in that

Galerkin’s method is employed in the spectral domain to

derive a matrix equation that is numerically efficient for
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solving the capacitance problem. Numerical results have

been obtained and compared with previously published

results. The accuracy and the relative efficiency of the

method have been demonstrated.

[1]

[2]

[3]

REFERENCES

A. Farrar and A. T. Adams, ‘<Matrix methods for microstrip
three-dimensional problems,” IEEE .Trans. Microwave Theory
Tech., vol. MTT-2o, pp. 497-,504, Aug. 1972.
M. Maeda, “An analysis of gap in microstrip transmission lines,”
IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 309-

395, June 1972.
P. Silvester and P. Benedek, “Equivalent capacitances of micro-
strip open circuits,)’ IEEE Trans. Microwaue Theory Tech., vol.
MTT-20, pp. .511–516, Aug. 1972.

[4]

[5]

[6]

[7]

[8]

[9]

P. Benedek and P. Silvester, “Equivalent capacitances for
microstrip gaps and steps,” IEEE Trans. Microwave Thwry
Tech., vol. MTT-20, pp. 729-733, Nov. 1972.
I. Stakgold, Boundary Value Problems of Ma~hematiml Phw%
vol. 2. New York: Macmillan, 1968.
T. Itoh and R. Mittra, “A new method for calculating the
capacit ante of a circular disk for microwave integrated circuits,”
IEEE Trans. Microwave Thwry Tech., vol. MTT-21, pp. 431-
432, June 1973.
W. R. Smvthe. Static and Dunamic Electricity. New York:
McGraw-H~ll, 1968.
T. Itoh, R. Mittra, and R. D. Ward, “A method for computing
edge capacitance of finite and semi-infinite microstrip lines,”
IEEE Trans. Microwave Than-y Tech. (Short Papers), vol.
MTT-20, pp. 847–849, Dec. 1972.
E. Yamashita and R. Mittraj “Variational method of the
analysis of microstrip lines,” IEEE Trans. Microwave Theory
Tech., vol. MTT-16, pp. 251-256, Apr. 1968.

Theory of Coupled Open Transmission Lines and Its Applications

MASANOR1 MATSUHARA AND NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

Abstract—A technique is presented which is applicable to any

uniform coupled open transmission lines such as coupled optical

integrated circuits, The proposed technique is as follows.

The electromagnetic fields of the wave propagating along a coupled

line is expressed in terms of a linear combination of the fields associ-

ated with the individual lines, as a zero-order appfoxirnation. Insert-

ing this trial field description into the variational expression for the

propagation constant & and applying the well-known Rayleigh-Ritz’s

procedure, accurate solutions for the propagation constants of the

coupled liries are obtained.

This method can be applied generally to analyze coupled structures

in microwave, millimeter wave, and optical wave circuitry. As ah

illustrative example, the cmtpling betwee”n two optical transmission

lines consisting of lens-like dielectric media has been analyzed by

means of the proposed technique.

I. INTRODUCTION

THE PROBLEM of coupling between open transmission

lines is interesting both from academic and practical

points of view in connection with the design and analysis

of optical integrated circuits and components (see Fig, 6),
Though several papers concerning the coupling of open

transmission lines have been reported [11-[4]Z only the

special case where the coupling occurs between two

identical open transmission lines has been analyzed. To

the authors knowledge, a technique adequate to treat the

coupling between two cliff erent open transmission lines

has not been given before.

This paper presents a theory which can be applied to

two arbitrary coupled open transmission lines. The tech-
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nique proposed is based on the variational method.1 The

procedure of the calculation is quite simple and straight-

forward as long as the electromagnetic fields associated

with individual transmission lines are already known. As

an example of the application of the proposed theory, the

coupling between two dielectric lines consisting of lens-

like media has been analyzed.

II. VARIATIONAL EXPRESSION FOR THE

PROPAGATION CONSTANT

The magnetic field H of any uniform open transmission

line can be expressed as

H = (h, + i.h,) exp[j(cd – @z)] (1)

where ht and ha are the transverse and longitudinal com-

ponents of the field, respectively, i, is a unit vector in the

longitudinal direction z, and@ is the propagation constant.

The variational expression for the propagation constant @

in the z direction of a Iossless uniform transmission line
is given as%

P2 = N/D (2)

I The theory described in the present paper was original~.y re-
ported at Radiation Science Research Committee on Aprd 30,
1971, in Japanese. After preparing the manuscript of the present
paper, the authors found two related articles. One is Marcuse’s
work [5] where the couphng problem is treated with a perturbation
method, and the other is Snyder’s paper [6] in which the problem
is solved by a modal-expansion approach.

z The variational expressions for the propagation constant of the
guided waves have been derived by several authors in different
forms. The expression (2) is a slight modification and generalization
of Kurokawa’s original one [7]. The variational expression (2) has
the advantage that it can be easily applied even though the material
constants involved change discontinuously in the transverse cross-
sectional surfaw of the guide.


